Show simple item record

dc.contributor.advisorManolis Kellis.en_US
dc.contributor.authorAltshuler, Robert C. (Robert Charles)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-12-05T19:56:25Z
dc.date.available2016-12-05T19:56:25Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/105648
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 91-96).en_US
dc.description.abstractUnderstanding how variation in genome sequence leads to differences in gene regulation is a longstanding challenge that is essential to explaining the many phenotypic differences and complex diseases that are observed in humans. Sequencing-based functional genomics assays provide unique insight into this problem by allowing direct observation of differences between homologous chromosomes in, for example, gene expression, transcription factor binding, or chromatin state. In this thesis, we use data from the ENCODE project to conduct a unique examination of allele-specific activity jointly across many layers of regulation including chromatin structure and modifications, occupancy by transcription factors and RNA Polymerase II, and ultimately gene expression. We develop new computational approaches for (1) creating personal genomes; (2) facilitating their use in the analysis of sequenced reads; (3) detecting allele-specific activity; (4) identifying allelic differences in transcription factor binding motifs; and (5) jointly analyzing functional data to identify putative causal variants in eQTLs or GWAS loci. We show that these approaches improve upon existing methods. We observe that there are genome-wide correlations in allele-specific activity, and that allele-specific activity is widespread across the autosomes. We demonstrate that we can gain insights into gene regulation by combining the signals of allele-specific activity from multiple assays. By detecting variants that alter transcription factor binding we find that we can identify putative causal variants in eQTLs. We show that allele-specific activity is enriched at GWAS SNPs and eQTLs and propose how analysis of allele-specific activity in individuals could provide an alternate pathway to discovery of eQTLs or identification of causal variants in eQTLs or GWAS loci.en_US
dc.description.statementofresponsibilityby Robert C. Altshuler.en_US
dc.format.extent96 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleComputational personal genomics : understanding the functional effects of sequence variationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc963849410en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record