Show simple item record

dc.contributor.advisorAsuman Ozdaglar and John N. Tsitsiklis.en_US
dc.contributor.authorDrakopoulos, Kimonen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-12-05T19:57:02Z
dc.date.available2016-12-05T19:57:02Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/105663
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 137-141).en_US
dc.description.abstractWe consider the propagation of a contagion process ("epidemic") on a network and study the problem of dynamically allocating a fixed curing budget to the nodes of the graph, at each time instant. We provide a dynamic policy for the rapid containment of a contagion process modeled as an SIS epidemic on a bounded degree undirected graph with n nodes. We show that if the budget r of curing resources available at each time is Q(W), where W is the CutWidth of the graph, and also of order [omega](log n), then the expected time until the extinction of the epidemic is of order O(n/r), which is within a constant factor from optimal, as well as sublinear in the number of nodes. Furthermore, if the CutWidth increases sublinearly with n, a sublinear expected time to extinction is possible with only a sublinearly increasing budget r. In contrast, we provide a lower bound on the expected time to extinction under any such dynamic allocation policy, for bounded degree graphs, in terms of a combinatorial quantity that we call the resistance of the set of initially infected nodes, the available budget, and the number of nodes n. Specifically, we consider the case of bounded degree graphs, with the resistance growing linearly in n. We show that if the curing budget is less than a certain multiple of the resistance, then the expected time to extinction grows exponentially with n. As a corollary, if all nodes are initially infected and the CutWidth of the graph grows linearly in n, while the curing budget is less than a certain multiple of the CutWidth, then the expected time to extinction grows exponentially in n. The combination of these two results establishes a fairly sharp phase transition on the expected time to extinction (sublinear versus exponential) based on the relation between the CutWidth and the curing budget. Finally, in the empirical part of the thesis, we analyze data on the evolution and propagation of influenza across the United States and discover that compartmental epidemic models enriched with environment dependent terms have fair prediction accuracy, and that the effect of inter-state traveling is negligible compared to the effect of intra-state contacts.en_US
dc.description.statementofresponsibilityby Kimon Drakopoulos.en_US
dc.format.extent141 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAnalysis and control of contagion processes on networksen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc964446754en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record