MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A robotic hand that utilizes ergonomic evaluation as feedback to improve human robot collaboration in soldering applications

Author(s)
Ort, Moses Teddy
Thumbnail
DownloadFull printable version (3.564Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
H. Harry Asada.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
People never seem to have enough hands. There are many tools that aim to address this challenge, ranging from the ubiquitous benchtop vise to the "helping hands" commonly used for soldering. However, these tools do not measure up to their human counterparts. They cannot adjust the position or orientation of the workpiece to suit a particular task which can cause workers to maintain unhealthy postures that are detrimental to their long-term health. This thesis addresses this shortcoming with a robotic arm that utilizes a gripper to grasp and hold a workpiece during a soldering task. The robot uses a Microsoft Kinect sensor to continuously analyze the posture of the human worker and calculate a score based on the RULA (Rapid Upper Limb Assessment), an objective measure used in the ergonomics field to evaluate ergonomic working postures. The robot adjusts the workpiece in order to optimize the RULA score using an adaptive simulated annealing algorithm to balance the exploration and exploitation phases of the optimization process. Initial testing indicates that the robot can consistently find positions which improve the RULA ranking by 24.6% of the measured range. This project demonstrates that human robot collaboration can be improved by utilizing sensors to evaluate the needs of a human partner and adjust the robot behavior accordingly.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 49-50).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105675
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.