MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nuclear magnetic resonance sensors and methods for chemical sensing in tissue

Author(s)
Bashyam, Ashvin (Ashvin Reddy)
Thumbnail
DownloadFull printable version (15.32Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Michael J. Cima.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Rapid, sensitive, and minimally invasive sensing of metabolites, chemicals, and biological molecules within tissue is a largely unsolved problem. Sensing molecular oxygen, pH, and water content is of particular interest as they have been shown to be useful for improving disease diagnosis and treatment monitoring in a diverse range of medical fields including trauma, solid tumor cancers, tissue grafts, wound healing, dehydration, athletic performance, and congestive heart failure. Nuclear magnetic resonance (NMR) offers a non-ionizing, rapid, repeatable, and molecularly sensitive measurement technique for chemical sensing. Existing hardware for highly versatile single sided measurement systems is insufficient for clinical use due to constraints on the size and shape of samples that can be measured, inadequate magnetic field performance, and low sensitivity. This thesis describes the development of a portable, single-sided NMR system for research and clinical use. A magnet assembly based on a linear Halbach array was developed to produce a large, remote, and uniform field. Suitable impedance matching circuitry was designed and constructed to efficiently transmit signals between NMR probes and a radiofrequency spectrometer. This system is suitable for use in NMR measurement within a clinical environment.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 100-107).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105679
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.