MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-throughput extrusion additive manufacturing using electrically resistive preheating

Author(s)
Malinowski, Maxwell
Thumbnail
DownloadFull printable version (6.348Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Anastasios John Hart.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Extrusion-based additive manufacturing, commonly known as fused deposition modeling (FDM) or fused filament fabrication (FFF) is incredibly useful in industry for a variety of reasons, including rapid prototyping and the ability to create complex geometries easily. However, its further adoption is limited by relatively slow part manufacturing rates when compared to conventional manufacturing methods. Previous work has identified three modules within the FDM process which are rate limiting: speed of gantry positioning, polymer heating, and extrusion pressure. Advancements in any one module will allow for higher volumetric output, which will in turn allow for higher rates of production using FDM. This work focuses on polymer heating, and demonstrates a new concept for rapid heating of filament by introducing conductive nanoparticles into the polymer resin and resistively heating sections in flow. This technique can improve the volumetric output of FDM printers by at least 20%. First, the resistive properties of the composite filament are characterized. Second, the concept is experimentally validated by demonstrating a decrease in extrusion force required to maintain a given feed rate when using resistive heating.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 33).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105693
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.