MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pinky : interactively analyzing large EEG datasets

Author(s)
Blum, Joshua (Joshua M.)
Thumbnail
DownloadFull printable version (3.617Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Samuel Madden.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I describe a system I designed and implemented for interactively analyzing large electroencephalogram (EEG) datasets. Trained experts, known as encephalographers, analyze EEG data to determine if a patient has experienced an epileptic seizure. Since EEG analysis is time intensive for large datasets, there is a growing corpus of unanalyzed EEG data. Fast analysis is essential for building a set of example data of EEG results, allowing doctors to quickly classify the behavior of future EEG scans. My system aims to reduce the cost of analysis by providing near real-time interaction with the datasets. The system has three optimized layers handling the storage, computation, and visualization of the data. I evaluate the design choices for each layer and compare three dierent implementations across dierent workloads.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 75-77).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105939
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.