MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

BlueCache : a scalable distributed flash-based key-value store

Author(s)
Xu, Shuotao
Thumbnail
DownloadFull printable version (2.156Mb)
Alternative title
Blue Cache : a scalable distributed flash-based key-value store
Scalable distributed flash-based key-value store
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Arvind.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Low-latency and high-bandwidth access to a large amount of data is a key requirement for many web applications in data centers. To satisfy such a requirement, a distributed inmemory key-value store (KVS), such as memcached and Redis, is widely used as a caching layer to augment the slower persistent backend storage (e.g. disks) in data centers. DRAMbased KVS is fast key-value access, but it is difficult to further scale the memory pool size because of cost, power/thermal concerns and floor plan limits. Flash memory offers an alternative as KVS storage media with higher capacity per dollar and less power per byte. However, a flash-based KVS software running on an x86 server with commodity SSD cannot harness the full potential device performance of flash memory, because of overheads of the legacy storage I/O stack and relatively slow network in comparison with faster flash storage. In this work, we examine an architecture of a scalable distributed flash-based key-value store to overcome these limitations. BlueCache consists of low-power hardware accelerators which directly manage raw NAND flash chips and also provide near-storage network processing. We have constructed a BlueCache KVS cluster which achieve the full potential performance of flash chips, and whose throughput directly scales with the number of nodes. BlueCache is 3.8x faster and 25x lower power consumption than a flash-backed KVS software running on x86 servers. As a data-center caching solution, BlueCache becomes a superior choice when the DRAM-based KVS has more than 7.7% misses due to limited capacity. BlueCache presents an attractive point in the cost-performance trade-off for data-center-scale key-value system.
Description
Thesis: S.M. in Computer Science and Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 63-68).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/105947
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.