Show simple item record

dc.contributor.advisorCharles E. Leiserson.en_US
dc.contributor.authorPantawongdecha, Payuten_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-12-22T15:16:50Z
dc.date.available2016-12-22T15:16:50Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/105968
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 73-75).en_US
dc.description.abstractDivide and conquer is an important concept in computer science. It is used ubiquitously to simplify and speed up programs. However, it needs to be optimized, with respect to parameter settings for example, in order to achieve the best performance. The problem boils down to searching for the best implementation choice on a given set of requirements, such as which machine the program is running on. The goal of this thesis is to apply and evaluate the Ztune approach [14] on serial divide-and-conquer matrix-vector multiplication. We implemented Ztune to autotune serial divide-and-conquer matrix-vector multiplication on machines with different hardware configurations, and found that Ztuneoptimized codes ran 1%-5% faster than the hand-optimized counterparts. We also compared Ztune-optimized results with other matrix-vector multiplication libraries including the Intel Math Kernel Library and OpenBLAS. Since the matrix-vector multiplication problem is a level 2 BLAS, it is not as computationally intensive as level 3 BLAS problems such as matrix-matrix multiplication and stencil computation. As a result, the measurement in matrix-vector multiplication is more prone to error from factors such as noise, cache alignment of the matrix, and cache states, which lead to wrong decision choices for Ztune. We explored multiple options to get more accurate measurements and demonstrated the techniques that remedied these issues. Lastly, we applied the Ztune approach to matrix-matrix multiplication, and we were able to achieve 2%-85% speedup compared to the hand-tuned code. This thesis represents joint work with Ekanathan Palamadai Natarajan.en_US
dc.description.statementofresponsibilityby Payut Pantawongdecha.en_US
dc.format.extent75 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAutotuning divide-and-conquer matrix-vector multiplicationen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc965614821en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record