Show simple item record

dc.contributor.advisorBoris Katz.en_US
dc.contributor.authorMorales, Alvaro, M. Eng. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-12-22T15:17:01Z
dc.date.available2016-12-22T15:17:01Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/105973
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 47-50).en_US
dc.description.abstractQuestion answering is an efficient and convenient way for humans to make use of the massive amount of information on the Web. I start with an interesting source of information -- infoboxes in Wikipedia that summarize factoid knowledge -- and develop a comprehensive approach to answering questions with high precision. I first build a system to access data in infoboxes in a structured manner. I use the system to construct a crowdsourced dataset of over 15,000 high-quality, diverse questions. With these questions, I train a convolutional neural network model that outperforms models that achieve top results in similar answer selection tasks.en_US
dc.description.statementofresponsibilityby Alvaro Morales.en_US
dc.format.extent50 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleLearning to answer questions from semi-structured knowledge sourcesen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc965624572en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record