MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluating modern defenses against control flow hijacking

Author(s)
Otgonbaatar, Ulziibayar
Thumbnail
DownloadFull printable version (915.3Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Hamed Okhravi and Howard Shrobe.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Memory corruption attacks continue to be a major vector of attack for compromising modern systems. Strong defenses such as complete memory safety for legacy languages (C/C++) incur a large overhead, while weaker and practical defenses such as Code Pointer Integrity (CPI) and Control Flow Integrity (CFI) have their weaknesses. In this thesis, we present attacks that expose the fundamental weaknesses of CPI and CFI. CPI promises to balance security and performance by focusing memory safety on code pointers thus preventing most control-hijacking attacks while maintaining low overhead. CPI protects access to code pointers by storing them in a safe region that is isolated by hardward enforcement on 0x86-32 architecture and by information-hiding on 0x86-64 and ARM architectures. We show that when CPI relies on information hiding, it's safe region can be leaked and thus rendering it ineffective against malicious exploits. CFI works by assigning tags to indirect branch targets statically and checking them at runtime. Coarse-grained enforcements of CFI that use a small number of tags to improve the performance overhead have been shown to be ineffective. As a result, a number of recent efforts have focused on fine-grained enforcement of CFI as it was originally proposed. In this work, we show that even a fine-grained form of CFI with unlimited number of tags is ineffective in protecting against attacks. We show that many popular code bases such as Apache and Nginx use coding practices that create flexibility in their intended control flow graph (CFG) even when a strong static analyzer is used to construct the CFG. These flexibilities allow an attacker to gain control of the execution while strictly adhering to a fine-grained CFI.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2015.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 65-70).
 
Date issued
2015
URI
http://hdl.handle.net/1721.1/106003
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.