MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Decibel : transactional branched versioning for relational data systems

Author(s)
Goehring, David (David G.)
Thumbnail
DownloadFull printable version (2.141Mb)
Alternative title
Transactional branched versioning for relational data systems
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Samuel Madden.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As scientific endeavors and data analysis become increasingly collaborative, there is a need for data management systems that natively support the versioning or branching of datasets to enable concurrent analysis, cleaning, integration, manipulation, or curation of data across teams of individuals. Common practice for sharing and collaborating on datasets involves creating or storing multiple copies of the dataset, one for each stage of analysis, with no provenance information tracking the relationships between these datasets. This results not only in wasted storage, but also makes it challenging to track and integrate modifications made by different users to the same dataset. Transaction management (ACID) for such systems requires additional tools to efficiently handle concurrent changes and ensure transactional consistency of the version graph (concurrent versioned commits, branches, and merges as well as changes to records). Furthermore, a new conflict model is required to describe how versioned operations can interfere with each other while still remaining serializable. Decibel is a new relational storage system with built-in version control and transaction management designed to address these shortcomings. Decibel's natural versioning primitives can also be leveraged to implement versioned transactions. Thorough evaluation of three versioned storage engine designs that focus on efficient query processing with minimal storage overhead via the development of an exhaustive benchmark suggest that Decibel is vastly superior to and enables more cross version analysis and functionality than existing techniques and DVCS software like git. Read only and historical cross-version query transactions are non-blocking and proceed all in parallel with minimal overhead. The benchmark also supports analyzing performance of versioned databases with transactional support. It also enables rigorous testing and evaluation of future versioned storage engine designs.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 151-159).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/106022
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.