Show simple item record

dc.contributor.advisorRuss Tedrake.en_US
dc.contributor.authorMajumdar, Anirudhaen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2016-12-22T15:48:39Z
dc.date.available2016-12-22T15:48:39Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/106033
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 125-136).en_US
dc.description.abstractWe consider the problem of generating motion plans for a robot that are guaranteed to succeed despite uncertainty in the environment, parametric model uncertainty, and disturbances. Furthermore, we consider scenarios where these plans must be generated in real-time, because constraints such as obstacles in the environment may not be known until they are perceived (with a noisy sensor) at runtime. Our approach is to pre-compute a library of "funnels" along dierent maneuvers of the system that the state is guaranteed to remain within (despite bounded disturbances) when the feedback controller corresponding to the maneuver is executed. The resulting funnel library is then used to sequentially compose motion plans at runtime while ensuring the safety of the robot. A major advantage of the work presented here is that by explicitly taking into account the eect of uncertainty, the robot can evaluate motion plans based on how vulnerable they are to disturbances. We demonstrate and validate our method using extensive hardware experiments on a small fixed-wing airplane avoiding obstacles at high speed (~12 mph), along with thorough simulation experiments of ground vehicle and quadrotor models navigating through cluttered environments. To our knowledge, the resulting hardware demonstrations on a fixed-wing airplane constitute one of the first examples of provably safe and robust control for robotic systems with complex nonlinear dynamics that need to plan in realtime in environments with complex geometric constraints. The key computational engine we leverage is sums-of-squares (SOS) programming. While SOS programming allows us to apply our approach to systems of relatively high dimensionality (up to approximately 10-15 dimensional state spaces), scaling our approach to higher dimensional systems such as humanoid robots requires a dierent set of computational tools. In this thesis, we demonstrate how DSOS and SDSOS programming, which are recently introduced alternatives to SOS programming, can be employed to achieve this improved scalability and handle control systems with as many as 30-50 state dimensions.en_US
dc.description.statementofresponsibilityby Anirudha Majumdar.en_US
dc.format.extent136 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleFunnel libraries for real-time robust feedback motion planningen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc965380239en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record