MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A no-go theorem for derandomized parallel repetition

Author(s)
Ramnarayan, Govind
Thumbnail
DownloadFull printable version (3.364Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Dana Moshkovitz.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this work we show a barrier towards proving a randomness-efficient parallel repetition, a promising avenue for achieving many tight inapproximability results. Feige and Kilian (STOC'95) proved an impossibility result for randomnessefficient parallel repetition for two prover games with small degree, i.e., when each prover has only few possibilities for the question of the other prover. In recent years, there have been indications that randomness-efficient parallel repetition (also called derandomized parallel repetition) might be possible for games with large degree, circumventing the impossibility result of Feige and Kilian. In particular, Dinur and Meir (CCC'11) construct games with large degree whose repetition can be derandomized using a theorem of Impagliazzo, Kabanets and Wigderson (SICOMP'12). However, obtaining derandomized parallel repetition theorems that would yield optimal inapproximability results has remained elusive. This paper presents an explanation for the current impasse in progress, by proving a limitation on derandomized parallel repetition. We formalize two properties which we call "fortification-friendliness" and "yields robust embeddings". We show that any proof of derandomized parallel repetition achieving almost-linear blow-up cannot both (a) be fortification-friendly and (b) yield robust embeddings. Unlike Feige and Kilian, we do not require the small degree assumption. Given that virtually all existing proofs of parallel repetition share these two properties, our no-go theorem highlights a major barrier to achieving almostlinear derandomized parallel repetition.
Description
Thesis: S.M. in Computer Science and Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 45-46).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/106080
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.