MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High performance data processing pipeline for connectome segmentation

Author(s)
Jakubiuk, Wiktor
Thumbnail
DownloadFull printable version (10.17Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Nir Shavit.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
By investigating neural connections, neuroscientists try to understand the brain and reconstruct its connectome. Automated connectome reconstruction from high resolution electron miscroscopy is a challenging problem, as all neurons and synapses in a volume have to be detected. A mm3 of a high-resolution brain tissue takes roughly a petabyte of space that the state-of-the-art pipelines are unable to process to date. A high-performance, fully automated image processing pipeline is proposed. Using a combination of image processing and machine learning algorithms (convolutional neural networks and random forests), the pipeline constructs a 3-dimensional connectome from 2-dimensional cross-sections of a mammal's brain. The proposed system achieves a low error rate (comparable with the state-of-the-art) and is capable of processing volumes of 100's of gigabytes in size. The main contributions of this thesis are multiple algorithmic techniques for 2- dimensional pixel classification of varying accuracy and speed trade-off, as well as a fast object segmentation algorithm. The majority of the system is parallelized for multi-core machines, and with minor additional modification is expected to work in a distributed setting.
Description
Thesis: M. Eng. in Computer Science and Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February 2016.
 
"December 2015." Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 83-88).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/106122
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.