MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust proprioceptive grasping with a soft robot hand

Author(s)
Homberg, Bianca (Bianca S.)
Thumbnail
DownloadFull printable version (14.14Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Daniela Rus.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This work presents a soft hand capable of robustly grasping and identifying objects based on internal state measurements along with a combined system which autonomously performs grasps. A highly compliant soft hand allows for intrinsic robustness to grasping uncertainties; the addition of internal sensing allows the configuration of the hand and object to be detected. The hand can be configured in different ways using finger unit modules. The finger module includes resistive force sensors on the fingertips for contact detection and resistive bend sensors for measuring the curvature profile of the finger. The curvature sensors can be used to estimate the contact geometry and thus to distinguish between a set of grasped objects. With one data point from each finger, the object grasped by the hand can be identified. A clustering algorithm to find the correspondence for each grasped object is presented for both enveloping grasps and pinch grasps. This hand is incorporated into a full system with vision and motion planning on the Baxter robot to autonomously perform grasps of objects placed on a table. This hand is a first step towards proprioceptive soft grasping.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 85-88).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/106123
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.