Show simple item record

dc.contributor.advisorAmos G. Winter, V.en_US
dc.contributor.authorO'Connor, Catherine L. (Catherine Leber)en_US
dc.contributor.otherMassachusetts Institute of Technology. Engineering Systems Division.en_US
dc.coverage.spatiala-ii---en_US
dc.date.accessioned2017-01-06T16:14:13Z
dc.date.available2017-01-06T16:14:13Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/106259
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, School of Engineering, System Design and Management Program, Engineering and Management Program, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 185-191).en_US
dc.description.abstractThe degrading water quality in India combined with reduced groundwater supplies and insufficient municipal water distribution has led to the adoption of household water purifiers across the country. These water purifiers are used to treat water for potable consumption (drinking and cooking), and include a range of technologies capable of treating contaminants found in municipal water, groundwater, or other supplemental sources. The purifiers vary in cost, and have varying levels of accessibility to different socio-economic groups. As of 2010, market studies estimated that water purifiers, and more specifically reverse osmosis (RO) units, had not yet achieved a high level of diffusion across India, though sales were projected to greatly increase. More recent studies found levels of adoption for RO purifiers in certain urban areas growing above 50%, much higher than the 10% or less of households relying primarily on groundwater. Interviews conducted in January 2016 confirmed that households with a municipal supply were treating their water with RO purifiers, so RO adoption has spread beyond homes with only groundwater as a source. Though increased RO system diffusion may increase access to improved water quality, the purifiers require a reject line that discards 30 to 80% of the input water. The waste generated can be substantial, and for an average RO recovery of 20% treating 5.0 liters per capita per day drinking water, total up to 100 liters per household per day, 82.2 megaliters per day (MLD) within the city of Delhi, or even 2,340 MLD across all major urban areas of India if complete adoption occurs within the top two socio-economic groups. These volumes can amount to a measurable fraction of the volume of groundwater that a city extracts to supplement its surface water supply, and the volume of wastewater that goes untreated due to insufficient infrastructure. Policy and technology-based alternatives such as a water efficiency ranking program and the replacement of RO with electrodialysis, a more efficient desalination technology, align with government initiatives calling for higher efficiency and public participation, though a combined program is likely needed to make household water treatment sustainable in the long-term.en_US
dc.description.statementofresponsibilityby Catherine L. O'Connor.en_US
dc.format.extent191 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectSystem Design and Management Program.en_US
dc.subjectEngineering Systems Division.en_US
dc.titleDecentralized water treatment in urban India, and the potential impacts of reverse osmosis water purifiersen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.contributor.departmentSystem Design and Management Program.en_US
dc.identifier.oclc962181427en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record