MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Understanding App Inventor forums

Author(s)
Tsai, Sylvan
Thumbnail
DownloadFull printable version (608.3Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Hal Abelson.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
MIT App Inventor is a visual blocks language that allows users to create mobile applications for Android. App Inventor users have the option of posting in a public support forum to discuss anything from specific programming issues to education issues. In order to leverage the information on the forums to improve App Inventor, we must first understand what is being discussed. In this thesis, we used unsupervised machine learning methods to automate discovery of discussion topics. First, we transformed posts into feature vectors using a bag-of-words model. Next, we clustered posts using k-means clustering and evaluated our results both quantitatively, by calculating the average silhouette of the posts, and qualitatively, by simply looking at the clusters of posts. Finally, we used LDA topic modeling to determine the topics being discussed and compared the extracted topic words to a manual evaluation of each cluster. Using this technique, we were able to uncover common problems with App Inventor that users encountered. We hope to use this information to improve users' experience with App Inventor.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 63-64).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/106386
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.