MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Disentangled representations in neural models

Author(s)
Whitney, William, M. Eng (William F.) Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (3.967Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Joshua B. Tenenbaum.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Representation learning is the foundation for the recent success of neural network models. However, the distributed representations generated by neural networks are far from ideal. Due to their highly entangled nature, they are difficult to reuse and interpret, and they do a poor job of capturing the sparsity which is present in real-world transformations. In this paper, I describe methods for learning disentangled representations in the two domains of graphics and computation. These methods allow neural methods to learn representations which are easy to interpret and reuse, yet they incur little or no penalty to performance. In the Graphics section, I demonstrate the ability of these methods to infer the generating parameters of images and rerender those images under novel conditions. In the Computation section, I describe a model which is able to factorize a multitask learning problem into subtasks and which experiences no catastrophic forgetting. Together these techniques provide the tools to design a wide range of models that learn disentangled representations and better model the factors of variation in the real world.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 57-62).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/106449
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.