Show simple item record

dc.contributor.authorSaranadhi, Dhananjai V.
dc.contributor.authorChen, Dayong
dc.contributor.authorKleingartner, Justin Alan
dc.contributor.authorSrinivasan, Siddarth
dc.contributor.authorCohen, Robert E
dc.contributor.authorMcKinley, Gareth H
dc.date.accessioned2017-01-17T15:49:54Z
dc.date.available2017-01-17T15:49:54Z
dc.date.issued2016-10
dc.date.submitted2016-03
dc.identifier.issn2375-2548
dc.identifier.urihttp://hdl.handle.net/1721.1/106505
dc.description.abstractSkin friction drag contributes a major portion of the total drag for small and large water vehicles at high Reynolds number (Re). One emerging approach to reducing drag is to use superhydrophobic surfaces to promote slip boundary conditions. However, the air layer or “plastron” trapped on submerged superhydrophobic surfaces often diminishes quickly under hydrostatic pressure and/or turbulent pressure fluctuations. We use active heating on a superhydrophobic surface to establish a stable vapor layer or “Leidenfrost” state at a relatively low superheat temperature. The continuous film of water vapor lubricates the interface, and the resulting slip boundary condition leads to skin friction drag reduction on the inner rotor of a custom Taylor-Couette apparatus. We find that skin friction can be reduced by 80 to 90% relative to an unheated superhydrophobic surface for Re in the range 26,100 ≤ Re ≤ 52,000. We derive a boundary layer and slip theory to describe the hydrodynamics in the system and show that the plastron thickness is h = 44 ± 11 μm, in agreement with expectations for a Leidenfrost surface.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Contract 3002453814)en_US
dc.language.isoen_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1126/sciadv.1600686en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAAASen_US
dc.titleSustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surfaceen_US
dc.typeArticleen_US
dc.identifier.citationSaranadhi, D. et al. “Sustained Drag Reduction in a Turbulent Flow Using a Low-Temperature Leidenfrost Surface.” Science Advances 2.10 (2016): e1600686–e1600686.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorSaranadhi, Dhananjai V.
dc.contributor.mitauthorChen, Dayong
dc.contributor.mitauthorKleingartner, Justin Alan
dc.contributor.mitauthorSrinivasan, Siddarth
dc.contributor.mitauthorCohen, Robert E
dc.contributor.mitauthorMcKinley, Gareth H
dc.relation.journalScience Advancesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSaranadhi, D.; Chen, D.; Kleingartner, J. A.; Srinivasan, S.; Cohen, R. E.; McKinley, G. H.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9709-3642
dc.identifier.orcidhttps://orcid.org/0000-0002-6226-3370
dc.identifier.orcidhttps://orcid.org/0000-0002-3873-2472
dc.identifier.orcidhttps://orcid.org/0000-0003-4591-6090
dc.identifier.orcidhttps://orcid.org/0000-0003-1085-7692
dc.identifier.orcidhttps://orcid.org/0000-0001-8323-2779
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record