Show simple item record

dc.contributor.advisorRobert M. Freund.en_US
dc.contributor.authorGrigas, Paul (Paul Edward)en_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2017-01-30T18:50:27Z
dc.date.available2017-01-30T18:50:27Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/106683
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 219-225).en_US
dc.description.abstractWe present several contributions at the interface of first-order methods for convex optimization and problems in statistical machine learning. In the first part of this thesis, we present new results for the Frank-Wolfe method, with a particular focus on: (i) novel computational guarantees that apply for any step-size sequence, (ii) a novel adjustment to the basic algorithm to better account for warm-start information, and (iii) extensions of the computational guarantees that hold in the presence of approximate subproblem and/or gradient computations. In the second part of the thesis, we present a unifying framework for interpreting "greedy" first-order methods -- namely Frank-Wolfe and greedy coordinate descent -- as instantiations of the dual averaging method of Nesterov, and we discuss the implications thereof. In the third part of the thesis, we present an extension of the Frank-Wolfe method that is designed to induce near-optimal low-rank solutions for nuclear norm regularized matrix completion and, for more general problems, induces near-optimal "well-structured" solutions. We establish computational guarantees that trade off efficiency in computing near-optimal solutions with upper bounds on the rank of iterates. We then present extensive computational results that show significant computational advantages over existing related approaches, in terms of delivering low rank and low run-time to compute a target optimality gap. In the fourth part of the thesis, we analyze boosting algorithms in linear regression from the perspective modern first-order methods in convex optimization. We show that classic boosting algorithms in linear regression can be viewed as subgradient descent to minimize the maximum absolute correlation between features and residuals. We also propose a slightly modified boosting algorithm that yields an algorithm for the Lasso, and that computes the Lasso path. Our perspective leads to first-ever comprehensive computational guarantees for all of these boosting algorithms, which provide a precise theoretical description of the amount of data-fidelity and regularization imparted by running a boosting algorithm, for any dataset. In the fifth and final part of the thesis, we present several related results in the contexts of boosting algorithms for logistic regression and the AdaBoost algorithm.en_US
dc.description.statementofresponsibilityby Paul Grigas.en_US
dc.format.extent225 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleMethods for convex optimization and statistical learningen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.contributor.departmentSloan School of Management
dc.identifier.oclc969768924en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record