MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uncertainty quantification and calibration in nuclear safety codes using Gaussian process active learning

Author(s)
Fugleberg, Eric N. (Eric Nels)
Thumbnail
DownloadFull printable version (7.241Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Michael Golay and Robert Youngblood.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Inverse problems and inverse uncertainty quantification (UQ) are challenging issues when dealing with complex and highly non-linear functions. Methods have been developed to decrease the computational burden by using the Gaussian Process (GP) emulator model framework to approximate the input-output relation of a deterministic computer code. The GP emulator can then be used in place of the computer code to perform Bayesian calibration techniques to determine uncertain parameter distribution. The performance of a GP emulator is largely dependent on the quality of the points in its training set; the best emulator exactly replicates the output of the computer code. The uncertain parameter posterior sample space is not known a priori, resulting in GP training sets covering as much of the prior sample space as possible in hopes of covering the posterior space well enough. This work improves the performance of the simple GP emulator using an active learning methodology to select additional training points which cover the posterior sample space of the unknown parameters. Furthermore, the effect of the covariance function on the performance of the GP is investigated with recommendations made for future GP emulator applications.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2016.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 85-87).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/106691
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.