dc.contributor.advisor | George Barbastathis. | en_US |
dc.contributor.author | Choi, Hyungryul | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Mechanical Engineering. | en_US |
dc.date.accessioned | 2017-01-30T19:15:30Z | |
dc.date.available | 2017-01-30T19:15:30Z | |
dc.date.copyright | 2011 | en_US |
dc.date.issued | 2011 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/106723 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 69-73). | en_US |
dc.description.abstract | Moth eyes minimize reflection over a broad band of angles and colors and lotus leaves minimize wetting over a broad range of breakthrough pressures by virtue of subwavelength structures patterned on their respective surfaces; similar examples of organisms exploiting geometry to attain properties unavailable in bulk materials are abundant in nature. These instances have inspired applications to man-made structures, collectively known as functional materials: for example, self-cleaning/anti-fogging surfaces, and solar cells with increased efficiency. I fabricated a functional surface where both wetting and reflectivity are controlled by geometry. Using a periodic array of subwavelength-sized high aspect ratio cones, patterned on glass and coated with optimized surfactants, I have experimentally shown that we can significantly enhance transmission from the surfaces of a glass slab, and at the same time make the surfaces either superhydrophobic or superhydrophilic, depending on the applications, such as antifogging and self-cleaning glass. Novel lithographic techniques result in high patterning accuracy over large surface areas, and is easily adaptable to nanoimprinting for future mass replication. In addition, an all-dielectric subwavelength-patterned Luneburg lens was fabricated for operation at free-space wavelength of A =1.55 um. | en_US |
dc.description.statementofresponsibility | by Hyungryul Choi. | en_US |
dc.format.extent | 73 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.title | Fabrication of anti-reflective and imaging nanostructured optical elements | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.identifier.oclc | 765489036 | en_US |