MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Autonomous replication of integrative and conjugative elements

Author(s)
Wright, Laurel D
Thumbnail
DownloadFull printable version (12.33Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biology.
Advisor
Alan D. Grossman.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Mobile genetic elements facilitate movement of genes, including those conferring antibiotic resistance and other traits, between bacteria. Integrative and conjugative elements (ICEs), also known as conjugative transposons, are a large family of mobile genetic elements that can transfer between neighboring cells. ICEs are found integrated in the chromosome of their host bacterium, where they are transmitted to daughter cells by chromosomal replication and cell division. Under certain conditions, ICE DNA will excise and form a circular plasmid-like intermediate. It was previously thought that ICEs were incapable of autonomous replication. However, my research, along with the work of others, shows that ICEs can replicate autonomously, and that many ICEs utilize a rolling circle replication mechanism. Plasmids and phages that use rolling circle replication encode a single strand origin (sso) that enhances priming of DNA synthesis. We identified a functional single strand origin, sso1, in the integrative and conjugative element ICEBs1 of Bacillus subtilis. Genetic analyses indicated that ICEBs1 uses sso1 and at least one other region for second strand DNA synthesis. Sso activity was important for autonomous, rolling circle replication of ICEBs1 in host cells, and for stable acquisition of the element in new host cells. I also showed that the broad-host range ICE Tn916 replicates autonomously by a rolling circle mechanism. Replication of Tn916 was dependent on the relaxase encoded by Tn916 orf20. The origin of transfer of Tn916, oriT(916), also functioned as an origin of replication. I found that the relaxase (Orf20) and the two putative helicase processivity factors (Orf22 and Orf23) encoded by Tn916 likely interact in a complex to facilitate replication. Lastly, I identified a functional single strand origin of replication (sso) in Tn916 that I predict primes second strand synthesis during rolling circle replication. The importance of autonomous replication by rolling circle in the ICE lifecycle and horizontal gene transfer processes is discussed.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/106738
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.