Show simple item record

dc.contributor.advisorPeng Yin.en_US
dc.contributor.authorOng, Luvena Le-Yunen_US
dc.contributor.otherHarvard--MIT Program in Health Sciences and Technology.en_US
dc.date.accessioned2017-01-30T19:16:18Z
dc.date.available2017-01-30T19:16:18Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/106741
dc.descriptionThesis: Ph. D. in Medical Engineering and Medical Physics, Harvard-MIT Program in Health Sciences and Technology, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 137-148).en_US
dc.description.abstractPatterning complex 3D features at the nanoscale offers potential applications for a wide range of fields from materials to medicine. While numerous methods have been developed to manipulate nanoscale materials, these methods are typically limited by their difficulty in creating arbitrary 3D patterns. Self-assembly of nucleic acids has emerged as a promising method for addressing this challenge due to the predictability and programmability of the material and its structure. While a diversity of DNA nanostructures have been designed by specifying complementarity rules between strands, creation of 3D nanostructures requires careful design of strand architecture, and patterns are often limited to a volume of 25 x 25 x 25 nm³ Here, we address the challenges in structural DNA nanotechnology by developing a modular DNA "brick" approach. These bricks are short, single-stranded oliogomers that can self-assemble in a single-pot reaction to a prescribed 3D shape. Using this modular approach, we demonstrate high efficiency in 3D design by generating 100 distinct, discrete 3D structures from a library of strands. We also created long-range ordering of channels, tunnels, and pores by growing micron-sized 3D periodic crystals made from DNA bricks. Finally, we applied this approach to control over 30,000 unique component strands to selfassemble into cuboids measuring over 100 nm in each dimension. These structures were further used to pattern highly complex cavities. Together, this work represents a simple, modular, and versatile method for 3D nanofabrication. This unique patterning capability of DNA bricks may enable development of new applications by providing a foundation for intricate and complex control of an unprecedented number of independent components.en_US
dc.description.statementofresponsibilityby Luvena Le-Yun Ong.en_US
dc.format.extent149 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectHarvard--MIT Program in Health Sciences and Technology.en_US
dc.titleSelf-assembly of three-dimensional nucleic acid nanostructuresen_US
dc.typeThesisen_US
dc.description.degreePh. D. in Medical Engineering and Medical Physicsen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technology
dc.identifier.oclc969345357en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record