MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact of x-ray dose on the response of CR-39 nuclear track detector to 1-5.5 MeV alphas and 0.5-9.1 MeV protons for spectroscopy at the OMEGA Laser Facility and the National Ignition Facility

Author(s)
Rojas, Jimmy A. (Rojas Herrera)
Thumbnail
DownloadFull printable version (5.971Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Richard Petrasso.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The CR-39 nuclear track detector is used in many nuclear diagnostics fielded at inertial confinement fusion (ICF) facilities. Large x-ray fluences generated by ICF experiments may impact the CR-39 response to incident charged particles. To determine the impact of x-ray exposure on the CR-39 response to protons and alpha particles, a thick-target bremsstrahlung x-ray generator was used to expose CR-39 to various doses of 30 and 8keV Cu-K[alpha] and K[beta] x-rays. The CR-39 detectors were then exposed to 1-5.5 MeV alphas or 0.5- 9.1 MeV protons. The regions of the CR-39 exposed to x-rays showed a smaller track diameter than those not exposed to x-rays: for example, a dose of 3.0±0.1 Gy causes a decrease of (19±2)% in the track diameter of a 5.5 MeV alpha, while a dose of 6.0±0.1 Gy results in a decrease of (29±1)% in the track diameter of a 3.0 MeV proton. The reduced track diameters were found to be predominantly caused by a comparable reduction in the bulk etch rate of the CR-39 with x-ray dose. A residual effect, due to changes in track etch rate and dependent on incident particle energy, was characterized by an empirical formula.
Description
Thesis: S.B., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, June 2016.
 
Page 47 blank. Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 45-46).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/106770
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.