Show simple item record

dc.contributor.advisorNeville Hogan.en_US
dc.contributor.authorBosworth, William R., Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2017-01-30T19:18:17Z
dc.date.available2017-01-30T19:18:17Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/106788
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 161-175).en_US
dc.description.abstractThis thesis investigates the role of foot-ground dynamics in robot legged locomotion. Empirical observation with robot hardware is critical for such investigation due to the complexity of impact dynamics and the infinite variability of real terrain. To this end, we introduce the MIT Super Mini Cheetah, a small, inexpensive quadrupedal robot that can run and walk over a variety of ground types (gravel, tile, carpet, grass, etc.). Experiments with the Super Mini Cheetah demonstrate new terrain-adaptation capabilities for locomotion control over surfaces with varying mechanical impedance. The terrain adaptation methods are shown empirically to increase gait stability and to reduce impact loading on the legs. To the best of our knowledge, the work demonstrates the first example of a running controller that measures changes in stiffness of the ground and modifies its controller within a single stride. This enables the Super Mini Cheetah to run smoothly between hard and soft surfaces. Algorithms to quickly measure ground properties are presented. These measurements are made by observing interaction between robot legs and the ground. We show that the impact event between the foot and the ground is particularly information-rich which enables the Super Mini Cheetah to estimate ground stiffness within 50 milliseconds of beginning a step. These results contribute new knowledge about the hardware and control requirements to provide legged robots with a useful sense of touch, which will greatly enhance the types of terrain that legged robots can safely and gracefully roam.en_US
dc.description.statementofresponsibilityby Will Bosworth.en_US
dc.format.extent175 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titlePerception and control of robot legged locomotion over variable terrainen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc970394106en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record