MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High performance curtain wall mullion section design with various densities of gyroid

Author(s)
Kang, Min Jeong, M. Eng. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (13.06Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Caitlin T. Mueller and Zhao Qin.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The thermal bridge problem in building fagades has become a topic of interest as the energy performance of building enclosure design required improvements with a global lead in sustainable building design. Curtain wall fagade systems are widely used for recent high-rise buildings, and the thermal bridge issue occurs mainly within the aluminum frame of the curtain wall system. In addition to the thermal bridging effects, the conventional curtain wall fagade designs have limitations in increasing the stiffness of the mullion. As to address the lack of an innovative solution to solve both issues, this thesis proposes utilizing a cellular structure in mullion design. In particular, this thesis has selected a single-gyroid structure, which is an open cell foam structure that has the minimum surface area necessary to span a region of space. The thesis explores various aspects of the application that extend from a rapid modeling method of gyroid structure, experiments, and simulations along with theoretical values for mechanical and thermal properties of gyroid, to topology optimization of the various densities of gyroid in the composite structure. The results are expected to improve the curtain wall designs with future experimental verifications.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 87-91).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/107061
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.