Show simple item record

dc.contributor.advisorFrank Dale Morgan.en_US
dc.contributor.authorAl Nasser, Saleh Mohammeden_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.en_US
dc.date.accessioned2017-02-22T19:03:54Z
dc.date.available2017-02-22T19:03:54Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/107108
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 96-99).en_US
dc.description.abstractHistory matching and prediction of future performance of hydrocarbon reservoirs and groundwater aquifers are considered some of the biggest challenges facing hydrologists and petroleum engineers. The complexity of the simulation method, in addition to the huge amount of input data, makes evaluating the reservoir performance expensive. The conventional reservoir history matching procedure usually requires a trial and error process of altering various reservoir parameters and simulating the pressure distribution and field production, or what is known as 'Forward Modeling'. In this study, I propose the use of regular electrical arrays to simulate aquifer drawdowns. By representing reservoir hydraulic conductivities as electric resistors and storativities as capacitors, simulating the potential response gives results similar to that of solving the hydraulic flow equations. Scaling the electrical parameters results in an equivalent approximation of voltage and hydraulic head. A set of synthetic aquifer models with increasing structure complexity were simulated under the Dupuit-Fochheimer assumption of negligible vertical flow. Under the finite difference scheme, aquifers subjected to a constant pumping rate were modeled under different boundary conditions. The transient drawdown data curves from either a single well or multiple wells were obtained, and the reservoir data were inverted for the hydraulic parameters. Because both electrical and hydraulic approaches result in similar response, parameters inversion can be performed on either system. Consequently, the hydraulic equations were used in the inversion. Inversion was performed according to the method of damped least-square where the Jacobian matrix is decomposed by Singular Value Decomposition (SVD). Furthermore, hydraulic aquifers are attempted to be modeled with a binary conductivity structure, which is an effective medium of two hydraulic conductivities.en_US
dc.description.statementofresponsibilityby Saleh Mohammed Al Nasser.en_US
dc.format.extent99 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.titleA comparison of electric and hydraulic approaches to fluid flow simulation and hydraulic parameters inversionen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.en_US
dc.identifier.oclc971495028en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record