Show simple item record

dc.contributor.authorLim, J.
dc.contributor.authorLi, Y.
dc.contributor.authorAlsem, D. H.
dc.contributor.authorSo, H.
dc.contributor.authorLee, S. C.
dc.contributor.authorLiu, X.
dc.contributor.authorJin, N.
dc.contributor.authorYu, Y.-s.
dc.contributor.authorSalmon, N. J.
dc.contributor.authorShapiro, D. A.
dc.contributor.authorTyliszczak, T.
dc.contributor.authorChueh, W. C.
dc.contributor.authorCogswell, Daniel Aaron
dc.contributor.authorBazant, Martin Z
dc.contributor.authorBai, Peng
dc.date.accessioned2017-03-06T21:19:32Z
dc.date.available2017-03-06T21:19:32Z
dc.date.issued2016-08
dc.date.submitted2016-02
dc.identifier.issn0036-8075
dc.identifier.issn1095-9203
dc.identifier.urihttp://hdl.handle.net/1721.1/107200
dc.description.abstractThe kinetics and uniformity of ion insertion reactions at the solid/liquid interface govern the rate capability and lifetime, respectively, of electrochemical devices such as Li-ion batteries. We develop an operando X-ray microscopy platform that maps the dynamics of the Li composition and insertion rate in Li[subscript X]FePO[subscript 4], and show that nanoscale spatial variations in rate and in composition control the lithiation pathway at the sub-particle length scale. Specifically, spatial variations in the insertion rate constant lead to the formation of nonuniform domains, and the composition dependence of the rate constant amplifies nonuniformities during delithiation but suppresses them during lithiation, and moreover stabilizes the solid solution during lithiation. This coupling of lithium composition and surface reaction rates controls the kinetics and uniformity during electrochemical ion insertion.en_US
dc.description.sponsorshipStanford University. Global Climate and Energy Projecten_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Basic Energy Sciences (Stanford University. SUNCAT Center for Interface Science and Catalysis)en_US
dc.language.isoen_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttps://doi.org/10.1126/science.aaf4914en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT Web Domainen_US
dc.titleOrigin and hysteresis of lithium compositional spatiodynamics within battery primary particlesen_US
dc.typeArticleen_US
dc.identifier.citationLim, J. et al. “Origin and Hysteresis of Lithium Compositional Spatiodynamics within Battery Primary Particles.” Science 353.6299 (2016): 566–571.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorCogswell, Daniel Aaron
dc.contributor.mitauthorBazant, Martin Z
dc.contributor.mitauthorBai, Peng
dc.relation.journalScienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLim, J.; Li, Y.; Alsem, D. H.; So, H.; Lee, S. C.; Bai, P.; Cogswell, D. A.; Liu, X.; Jin, N.; Yu, Y.-s.; Salmon, N. J.; Shapiro, D. A.; Bazant, M. Z.; Tyliszczak, T.; Chueh, W. C.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record