Show simple item record

dc.contributor.advisorDavid J. Perreault and Khurram K. Afridi.en_US
dc.contributor.authorGunter, Samantha Joellynen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2017-03-10T14:19:44Z
dc.date.available2017-03-10T14:19:44Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/107284
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 355-360).en_US
dc.description.abstractIn this thesis, we introduce two large-step-down dc-dc converter architectures that are designed to provide zero-voltage switching of the power devices. While the techniques used in these converters can be used in a wide range of applications, the operating voltage and power levels used in this thesis are for data centers, where dc distribution power delivery is expected to see its first deployment. The nominal 380 V bus voltage will need to be converted to 12 V using a high-efficiency dc-dc converter that can deliver several hundred watts of power to each rack to power the servers. The converters are expected to operate efficiently across a wide input voltage range of 260 V to 410 V and down to powers in the tens of watts range. The first converter architecture is based on the concept of an Impedance Control Network (ICN) resonant converter. Using phase-shift control along with a specifically designed impedance network, this converter can maintain resistive loading of the inverters as the input voltage varies. To back down in power, the converter can be efficiently operated using burst (on/off) mode control. To deliver lower power, we introduce an additional control technique using Variable Frequency Multiplier (VFX) inverters and/or rectifiers. The second converter architecture combines the properties of an active bridge converter with multiple stacked inverters, a multi-winding single core transformer, and a reconfigurable rectifier. The stacked inverter topology improves the range of powers over which zero-voltage switching can be achieved. The multi-winding transformer and reconfigurable rectifier further extend the efficient operating range to very low powers by reducing core loss and increasing zero-voltage switching capability. Both proposed architectures are suitable for large-step-down, wide-input voltage, wide-output power applications such as dc-dc converters for dc distribution.en_US
dc.description.statementofresponsibilityby Samantha Joellyn Gunter.en_US
dc.format.extent360 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleInvestigation and application of high-efficiency large-step-down power conversion architecturesen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc972905030en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record