dc.contributor.advisor | Adam Chlipala. | en_US |
dc.contributor.author | Pit-Claudel, Clément | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2017-03-10T14:20:09Z | |
dc.date.available | 2017-03-10T14:20:09Z | |
dc.date.copyright | 2016 | en_US |
dc.date.issued | 2016 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/107293 | |
dc.description | Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016. | en_US |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages [131]-134). | en_US |
dc.description.abstract | Extracting and compiling certified programs may introduce bugs in otherwise proven-correct code, reducing the extent of the guarantees that proof assistants and correct-by-construction program-derivation frameworks provide. We explore a novel approach to extracting and compiling embedded domain-specific languages developed in a proof assistant (Coq), showing how it allows us to extend correctness guarantees all the way down to a verification-aware assembly language. Our core idea is to phrase compilation of shallowly embedded programs to a lower-level deeply embedded language as a synthesis problem, solved using simple proof-search techniques. This technique is extensible (support for individual language constructs is provided by a user-extensible database of compilation tactics and lemmas) and allows the source programs to depend on axiomatically specified methods of externally implemented data structures, delaying linking to the assembly stage. Composed with the Fiat and Bedrock frameworks, our new method provides the first proof-generating automatic translation from SQL-style relational programs into executable assembly code. | en_US |
dc.description.statementofresponsibility | by Clément Pit-Claudel. | en_US |
dc.format.extent | 134 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Compilation using correct-by-construction program synthesis | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 973557793 | en_US |