MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The quantum Johnson homomorphism and symplectomorphism of 3-folds

Author(s)
Blaier, Netanel S
Thumbnail
DownloadFull printable version (21.40Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Paul Seidel.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
introduce a subset K2,A of the symplectic mapping class group, and an invariant ... that associates a characteristic class in Hochschild cohomology to every symplectomorphism ... K2,A. These are analogues to the familiar Johnson kernel X9 and second Johnson homomorphism - 2 from low-dimensional topology. The method is quite general, and unlike many abstract tools, explicitly computable in certain nice cases. As an application, we prove the existence of symplectomorphism ... of infinite order in symplectic mapping class group ... where Y is the blow-up of P3 at a genus 4 curve. The classical connection between such Fano varieties and cubic 3-folds allows us to factor ... as a product of six-dimensional generalized Dehn twists.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 345-354).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/107327
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.