MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The impact of installed base and machine failure prediction on spare parts forecasting and inventory planning

Author(s)
Brocks, Michael Patrick; Trujillo Castañeda, Renzo Eliseo
Thumbnail
DownloadFull printable version (5.145Mb)
Other Contributors
Massachusetts Institute of Technology. Engineering Systems Division.
Advisor
Daniel W. Steeneck.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Recent advances in technological capability and economics have opened up a new world of capability known as the Internet of Things (IoT). The Internet of Things is the concept that all machines can be connected to the internet, and be remotely monitored through an infrastructure of interconnected software and hardware. Many companies are just beginning to explore the economic value that the Internet of Things can unlock, with much of the initial focus on remote diagnostics and predictive maintenance, particularly in application to industrial machines. This research tests various scenarios of predictive failure accuracy, creating spare parts forecasts based off of varying predictive forecast parameters. We compare these scenarios and their respective outputs to a regular time-series forecasting scenario, inserting each type of forecast into a periodic review (R, S) inventory system. We measure the output of each forecast put into the system in terms of spare parts inventory levels and in-stock service performance. We find that as long as the true positive rate (TPR) and false positive rate (FPR) have different values, our model is able to hold a lower average inventory while providing a higher level of service. Additionally, as the difference between the two values increases, the average amount of inventory held decreases, while the level of service provided increases. A more detailed summary of the results found and the implications on service supply chain were developed, and further areas of research are discussed.
Description
Thesis: M. Eng. in Logistics, Massachusetts Institute of Technology, Supply Chain Management Program, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 66-70).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/107524
Department
Massachusetts Institute of Technology. Supply Chain Management Program
Publisher
Massachusetts Institute of Technology
Keywords
Supply Chain Management Program., Engineering Systems Division.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.