Show simple item record

dc.contributor.advisorDonald Lessard.en_US
dc.contributor.authorCornejo Gómez, César Albertoen_US
dc.contributor.otherMassachusetts Institute of Technology. Engineering Systems Division.en_US
dc.date.accessioned2017-03-20T19:41:36Z
dc.date.available2017-03-20T19:41:36Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/107592
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, School of Engineering, System Design and Management Program, Engineering and Management Program, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 73-75).en_US
dc.description.abstractHydropower has sufficient resources available and is actively promoted by Governments as part of their energy matrix, but its development is constrained by the difficulty of addressing location particularities, including technical features such as geology or hydrology, and institutional features such as social acceptance, environmental constraints and the regulatory framework. Project results emerge from the interactions of these Inherent Features and the Project Architecture and do not always meet stakeholders' expectations, leading to deficient project results and lost value. This thesis proposes a methodology for prototyping projects to reflect these particularities and inform project shaping and decision-making early in the process. The proposed methodology was built on three systems engineering and project complexity frameworks, and lessons learned from four case studies. Its contribution to hydropower development is related to (i) the incorporation of systems evolution over time on the development process, (ii) the identification and management of relationships among the various decomposed elements of the development, (iii) the identification of emergent properties from the interactions among all features, (iv) a prototype for developers to optimize or search for project architectures that meet stakeholders objectives while complying with restrictions, (v) the delivery of unbiased information for decision-makers, (vi) the opportunity of stakeholders to participate in the project shaping in a continuous fashion, and (vii) the delivery of a tool for the implementation team to evaluate and challenge changes to the project during construction. The usage of this methodology does not guarantee the avoidance of errors or unforeseen project outcomes, but it does reduce the chance for unknown risks emerging from the interactions of the evaluated features.en_US
dc.description.statementofresponsibilityby César Alberto Cornejo Gómez.en_US
dc.format.extent81 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectSystem Design and Management Program.en_US
dc.subjectEngineering Systems Division.en_US
dc.titleMethodology for the development of hydroelectric power plantsen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.contributor.departmentSystem Design and Management Program.en_US
dc.identifier.oclc974709584en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record