MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A guiding framework for applying machine learning in organizations

Author(s)
Tham, Alan (Alan An Liang)
Thumbnail
DownloadFull printable version (16.61Mb)
Other Contributors
Massachusetts Institute of Technology. Engineering Systems Division.
Advisor
Patrick Hale.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Machine Learning (ML) is an emerging business capability that have transformed many organizations by enabling them to learn from past data and helping them predict or make decisions on unknown future events. While ML is no longer the preserve of large IT companies, there are abundant opportunities for mid-sized organizations who do not have the resources of the larger IT companies to exploit their data through ML so as to gain deeper insights. This thesis outlines these opportunities and provide guidance for the adoption of ML by these organizations. This thesis examines available literature on current state of adoption of ML by organizations which highlight the gaps that motivate the thesis in providing a guiding framework for applying ML. To achieve this, the thesis provides the practitioner with an overview of ML from both technology and business perspectives that are integrated from multiple sources, categorized for ease of reference and communicated at the decision making level without delving into the mathematics behind ML. The thesis thereafter proposes the ML Integration framework for the System Architect to review the enterprise model, identify opportunities, evaluate technology adoption and architect the ML System. In this framework, system architecting methodologies as well as Object-Process Diagrams are used to illustrate the concepts and the architecture. The ML Integration framework is subsequently applied in the context of a hypothetical mid-sized hospital to illustrate how an architect would go about utilizing this framework. Future work is needed to validate the ML Integration framework, as well as improve the overview of ML specific to application domains such as recommender systems and speech/image recognition.
Description
Thesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, School of Engineering, System Design and Management Program, Engineering and Management Program, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 93-97).
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/107598
Department
Massachusetts Institute of Technology. Engineering and Management Program; System Design and Management Program.
Publisher
Massachusetts Institute of Technology
Keywords
Engineering and Management Program., System Design and Management Program., Engineering Systems Division.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.