Show simple item record

dc.contributor.advisorJames M. Utterback.en_US
dc.contributor.authorMishra, Pallavien_US
dc.contributor.otherMassachusetts Institute of Technology. Engineering Systems Division.en_US
dc.date.accessioned2017-03-20T19:42:09Z
dc.date.available2017-03-20T19:42:09Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/107604
dc.descriptionThesis: S.M. in Engineering and Management, Massachusetts Institute of Technology, School of Engineering, System Design and Management Program, Engineering and Management Program, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 60-64).en_US
dc.description.abstractThe fields of artificial intelligence has struggled since it's inception about fundamental question of what intelligence means and how to measure it. The underlying issue of defining intelligence and it's formal measure are sensitive issues in human culture, both in respect to humans and more so in respect to machines. Several attempts have been made to generalize the definition of universal intelligence and derive formal benchmark tests from such definitions. In this thesis, we will review the definition of universal intelligence and attempt to aggregate the salient features of mathematically formalized tests proposed for the same. The combined theoretical features for benchmark will then be used to analyze one promising platform - the Arcade Learning Environment (ALE) that integrates Atari 2600 games to test domain independent artificial agents. We will suggest practical ways to incorporate these features into the ALE platform to manage limitations of computing resources used to generate required environments for agents. The limitation of resources is not only a practical constraint but also a factor that should be included in defining any practically useful measure of intelligence. We learn from the exercise that defining intelligence by generalizing it is a self-defeating goal and that, intelligence is best defined with respect to the physical, time and computing resource-related constraint in which the agent operates. An agent with unlimited resources can adapt to infinite set of environments, but there can be no practical implementation of such an agent. Since physical universe itself has limited although large set of information encoded in the environment with a possibly finite set of non-repeating states, in order to be of practical use, the benchmarks tests should account for physical resources as well as physical time. This constraint related view calls for context-specific measure of intelligence rather than a cumulative total reward based measure across a defined set of environments.en_US
dc.description.statementofresponsibilityby Pallavi Mishra.en_US
dc.format.extent64 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEngineering and Management Program.en_US
dc.subjectSystem Design and Management Program.en_US
dc.subjectEngineering Systems Division.en_US
dc.titleUniversal artificial intelligence: evaluation and benchmarksen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Engineering and Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering and Management Programen_US
dc.contributor.departmentSystem Design and Management Program.en_US
dc.identifier.oclc974913514en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record