MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Differentiable McCormick relaxations

Author(s)
Khan, Kamil A.; Watson, Harry Alexander James; Barton, Paul I
Thumbnail
Download10898_2016_440_ReferencePDF.pdf (440.9Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
McCormick’s classical relaxation technique constructs closed-form convex and concave relaxations of compositions of simple intrinsic functions. These relaxations have several properties which make them useful for lower bounding problems in global optimization: they can be evaluated automatically, accurately, and computationally inexpensively, and they converge rapidly to the relaxed function as the underlying domain is reduced in size. They may also be adapted to yield relaxations of certain implicit functions and differential equation solutions. However, McCormick’s relaxations may be nonsmooth, and this nonsmoothness can create theoretical and computational obstacles when relaxations are to be deployed. This article presents a continuously differentiable variant of McCormick’s original relaxations in the multivariate McCormick framework of Tsoukalas and Mitsos. Gradients of the new differentiable relaxations may be computed efficiently using the standard forward or reverse modes of automatic differentiation. Extensions to differentiable relaxations of implicit functions and solutions of parametric ordinary differential equations are discussed. A C++ implementation based on the library MC++ is described and applied to a case study in nonsmooth nonconvex optimization.
Date issued
2016-05
URI
http://hdl.handle.net/1721.1/107681
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Process Systems Engineering Laboratory
Journal
Journal of Global Optimization
Publisher
Springer US
Citation
Khan, Kamil A., Harry A. J. Watson, and Paul I. Barton. “Differentiable McCormick Relaxations.” Journal of Global Optimization 67, no. 4 (May 27, 2016): 687–729.
Version: Author's final manuscript
ISSN
0925-5001
1573-2916

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.