MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dynamics and mechanics of associating polymer networks

Author(s)
Tang, Shengchang, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (41.94Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemical Engineering.
Advisor
Bradley D. Olsen.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Associating polymers have attracted much interest in a variety of applications such as selfhealing materials, biomaterials, rheological modifiers, and actuators. The interplay of polymer topology and sticker chemistry presents significant challenges in understanding the physics of associating polymers across a wide range of time and length scales. This thesis aims to provide new insights into the structure-dynamics-mechanics relationships of associating polymer networks. This thesis first examines diffusion of various types of associating polymers in the gel state through a combination of experiment and theory. By using forced Rayleigh scattering (FRS), phenomenological super-diffusion is revealed as a general feature in associating networks. Experimental findings are quantitatively explained by a simple two-state model that accounts for the interplay of chain diffusion and the dynamic association-dissociation equilibrium of polymer chains with surrounding network. Furthermore, hindered self-diffusion is shown to directly correlate with a deviation from the Maxwellian behavior in materials rheological response on the long time scale. To further understand how sticker dynamics affects the network mechanical properties, a new method referred to as "sticker diffusion and dissociation spectrometry" is developed to quantify the dissociation rate of stickers in the network junctions. It is demonstrated that sticker dissociation is a prerequisite step for sticker exchange that leads to macroscopic stress relaxation. Finally, this thesis explores the use of fluorescence recovery after photobleaching (FRAP) to measure self-diffusion of associating polymers, and a mathematical framework is established. The second part of this thesis focuses on the development of new methods of controlling the mechanical properties of associating networks through engineering the molecular structure of polymer chains. Specifically, topological entanglement is introduced into the network through extending the polymer chains to reach beyond their entanglement threshold. This strategy drastically enhances material's toughness, extensibility, creep resistance and stability in solutions. Various types of coupling chemistries are then explored to fine tune the extent of entanglement. The entanglement effect and the long-time relaxation of materials can be further controlled by introducing branching points into the macromolecules.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/107874
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Chemical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.