MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

New mechanisms in transcription regulation and chromosome organization in Caulobacter crescentus

Author(s)
Haakonsen, Diane Laure
Thumbnail
DownloadFull printable version (17.95Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Biology.
Advisor
Michael T. Laub.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Bacteria use a variety of mechanisms to control transcription in response to environmental cues or growth conditions. Activation or repression of transcription is often carried out by proteins, called transcription factors, that interact with DNA or RNA polymerase (RNAP) or both, and can change the preference of RNAP for target promoters. Additionally, DNA is tightly compacted and organized inside cells. In bacteria, nucleoid-associated proteins (NAPs) play critical roles in shaping and compacting the chromosome by bending, wrapping and bridging the DNA. The binding of these proteins can also profoundly affect gene expression regulation. In this work, I have characterized two DNA-binding proteins from the bacterium Caulobacter crescentus; one transcription factor, GcrA, and one NAP, CnpA. First, I found that GcrA, an essential cell-cycle regulator in Caulobacter, activates transcription by a new mechanism. Unlike most transcription factors that bind to promoters independently of RNAP, GcrA constitutively associates with RNAP via an interaction with Domain 2 of Y70, the primary sigma factor. I showed that GcrA recognizes a subset of methylation sites and can promote binding of RNAP and increase the rate of open complex formation at promoters harboring such sites. Understanding the mechanism by which GcrA activates transcription enabled the identification of its direct regulon and provided important insights into its essential cell-cycle function. For my second project, I identified a new nucleoid-associated protein (NAP), CnpA, in Caulobacter, via mass-spectrometry analysis of its nucleoid content. I showed that CnpA associates with AT-rich DNA but unlike other NAPs, likely does not repress transcription at these loci. We propose a model in which CnpA impacts global supercoiling levels. In sum, these two projects have contributed to expanding our views of how gene expression and chromosome organization are regulated in bacteria.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Biology, 2016.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references.
 
Date issued
2016
URI
http://hdl.handle.net/1721.1/107878
Department
Massachusetts Institute of Technology. Department of Biology
Publisher
Massachusetts Institute of Technology
Keywords
Biology.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.