Show simple item record

dc.contributor.advisorKripa K. Varanasi.en_US
dc.contributor.authorBengaluru Subramanyam, Srinivas Prasaden_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2017-04-18T16:37:49Z
dc.date.available2017-04-18T16:37:49Z
dc.date.copyright2016en_US
dc.date.issued2016en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/108217
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2016.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 81-87).en_US
dc.description.abstractIcing and scale fouling affect the functioning of a number of industries. The problems due to ice accretion have been prevalent for decades in a number of systems including aircrafts, wind turbines and power lines. Similarly, scale formation is one of the major problems that currently plague a number of industries like oil and gas, power plants and desalination systems. The state-of- the-art techniques are either inefficient or expensive making them infeasible in practical applications. The fundamentals of icing and fouling are similar with nucleation, growth and adhesion regimes controlling both the phenomena. Using the tools of surface engineering, I suggest three approaches in this thesis to address these problems - superhydrophobicity, lubricant-impregnation and active electric fields. While micro-textured superhydrophobic surfaces have been shown to be bad for anti-icing due to the formation of frost between the surface textures, I demonstrate low ice adhesion on nano-textured superhydrophobic surfaces because of the stability of vapor pockets even under frost forming conditions. On lubricant-impregnated surfaces, I observe low ice adhesion because of the presence of a liquid lubricant and a high density of crack-initiation sites. I investigated the effect of the surface texture and the properties of the impregnating lubricant on ice adhesion. With respect to scale fouling, I also find more than an order of magnitude decrease in the total amount of scale formed on lubricant-impregnated surfaces due to their extreme smoothness and low surface energy. I have developed a regime map based on the properties of the impregnating lubricant to impart scale-resistance to surfaces. I also utilize the benefits of surface engineering together with an active electric field to introduce defects at the interface of ice and the underlying substrate. Based on the polarity of the substrate, hydrogen or oxygen bubbles evolve during water electrolysis, which are trapped on the surface during freezing. By lowering the ice-substrate interfacial contact area, I observe more than 20 times reduction in ice adhesion using this approach. I establish the importance of understanding the effect of surface polarity, applied voltage and the substrate material on ice adhesion. The approaches suggested here could open up new domains for research in the field of anti-icing and anti-fouling.en_US
dc.description.statementofresponsibilityby Srinivas Prasad Bengaluru Subramanyam.en_US
dc.format.extent87 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleInterfacial engineering to control phase transitions : applications in icing and mineral scale foulingen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc980871385en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record