Show simple item record

dc.contributor.authorHook, Andrew L.
dc.contributor.authorChang, Chien-Yi
dc.contributor.authorYang, Jing
dc.contributor.authorScurr, David J.
dc.contributor.authorAtkinson, Steve
dc.contributor.authorWilliams, Paul
dc.contributor.authorDavies, Martyn C.
dc.contributor.authorAlexander, Morgan R.
dc.contributor.authorLanger, Robert S
dc.contributor.authorAnderson, Daniel Griffith
dc.date.accessioned2017-04-19T14:51:56Z
dc.date.available2017-04-19T14:51:56Z
dc.date.issued2012-01
dc.identifier.issn1940-087X
dc.identifier.urihttp://hdl.handle.net/1721.1/108248
dc.description.abstractThe discovery of novel biomaterials that are optimized for a specific biological application is readily achieved using polymer microarrays, which allows a combinatorial library of materials to be screened in a parallel, high throughput format. Herein is described the formation and characterization of a polymer microarray using an on-chip photopolymerization technique. This involves mixing monomers at varied ratios to produce a library of monomer solutions, transferring the solution to a glass slide format using a robotic printing device and curing with UV irradiation. This format is readily amenable to many biological assays, including stem cell attachment and proliferation, cell sorting and low bacterial adhesion, allowing the ready identification of 'hit' materials that fulfill a specific biological criterion. Furthermore, the use of high throughput surface characterization (HTSC) allows the biological performance to be correlated with physio-chemical properties, hence elucidating the biological-material interaction. HTSC makes use of water contact angle (WCA) measurements, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In particular, ToF-SIMS provides a chemically rich analysis of the sample that can be used to correlate the cell response with a molecular moiety. In some cases, the biological performance can be predicted from the ToF-SIMS spectra, demonstrating the chemical dependence of a biological-material interaction, and informing the development of hit materials.en_US
dc.language.isoen_US
dc.publisherMyJoVE Corporationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3791/3636en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.sourceJournal of Visualized Experiments (JoVE)en_US
dc.titlePolymer Microarrays for High Throughput Discovery of Biomaterialsen_US
dc.typeArticleen_US
dc.identifier.citationHook, Andrew L., Chien-Yi Chang, Jing Yang, David J. Scurr, Robert Langer, Daniel G. Anderson, Steve Atkinson, Paul Williams, Martyn C. Davies, and Morgan R. Alexander. “Polymer Microarrays for High Throughput Discovery of Biomaterials.” Journal of Visualized Experiments no. 59 (January 25, 2012).en_US
dc.contributor.departmentDavid H. Koch Institute for Integrative Cancer Research at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorLanger, Robert S
dc.contributor.mitauthorAnderson, Daniel Griffith
dc.relation.journalJournal of Visualized Experimentsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHook, Andrew L.; Chang, Chien-Yi; Yang, Jing; Scurr, David J.; Langer, Robert; Anderson, Daniel G.; Atkinson, Steve; Williams, Paul; Davies, Martyn C.; Alexander, Morgan R.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
dc.identifier.orcidhttps://orcid.org/0000-0001-5629-4798
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record