dc.contributor.author | Inamdar, Niraj K. | |
dc.contributor.author | Schlichting, Hilke E | |
dc.date.accessioned | 2017-04-21T18:04:52Z | |
dc.date.available | 2017-04-21T18:04:52Z | |
dc.date.issued | 2016-01 | |
dc.date.submitted | 2015-10 | |
dc.identifier.issn | 2041-8213 | |
dc.identifier.issn | 2041-8205 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/108353 | |
dc.description.abstract | Astro-H will be able for the first time to map gas velocities and detect turbulence in galaxy clusters. One of the best targets for turbulence studies is the Coma cluster, due to its proximity, absence of a cool core, and lack of a central active galactic nucleus. To determine what constraints Astro-H will be able to place on the Coma velocity field, we construct simulated maps of the projected gas velocity and compute the second-order structure function, an analog of the velocity power spectrum. We vary the injection scale, dissipation scale, slope, and normalization of the turbulent power spectrum, and apply measurement errors and finite sampling to the velocity field. We find that even with sparse coverage of the cluster, Astro-H will be able to measure the Mach number and the injection scale of the turbulent power spectrum—the quantities determining the energy flux down the turbulent cascade and the diffusion rate for everything that is advected by the gas (metals, cosmic rays, etc.). Astro-H will not be sensitive to the dissipation scale or the slope of the power spectrum in its inertial range, unless they are outside physically motivated intervals. We give the expected confidence intervals for the injection scale and the normalization of the power spectrum for a number of possible pointing configurations, combining the structure function and velocity dispersion data. Importantly, we also determine that measurement errors on the line shift will bias the velocity structure function upward, and show how to correct this bias. | en_US |
dc.language.iso | en_US | |
dc.publisher | IOP Publishing | en_US |
dc.relation.isversionof | http://dx.doi.org/10.3847/2041-8205/817/2/l13 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | IOP Publishing | en_US |
dc.title | STEALING THE GAS: GIANT IMPACTS AND THE LARGE DIVERSITY IN EXOPLANET DENSITIES | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Inamdar, Niraj K., and Hilke E. Schlichting. “STEALING THE GAS: GIANT IMPACTS AND THE LARGE DIVERSITY IN EXOPLANET DENSITIES.” The Astrophysical Journal 817.2 (2016): L13. © 2016 The American Astronomical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | en_US |
dc.contributor.mitauthor | Inamdar, Niraj K. | |
dc.contributor.mitauthor | Schlichting, Hilke E | |
dc.relation.journal | Astrophysical Journal. Letters | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Inamdar, Niraj K.; Schlichting, Hilke E. | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-0290-3054 | |
dc.identifier.orcid | https://orcid.org/0000-0002-0298-8089 | |
mit.license | PUBLISHER_POLICY | en_US |