Show simple item record

dc.contributor.authorChew, S. C.
dc.contributor.authorKundukad, B.
dc.contributor.authorTeh, W. K.
dc.contributor.authorYang, L.
dc.contributor.authorRice, S. A.
dc.contributor.authorKjelleberg, S.
dc.contributor.authorDoyle, Patrick S
dc.date.accessioned2017-05-05T17:25:51Z
dc.date.available2017-05-05T17:25:51Z
dc.date.issued2016-05
dc.date.submitted2015-11
dc.identifier.issn1744-683X
dc.identifier.issn1744-6848
dc.identifier.urihttp://hdl.handle.net/1721.1/108702
dc.description.abstractBiofilms are surface-attached communities of microorganisms embedded in an extracellular matrix and are essential for the cycling of organic matter in natural and engineered environments. They are also the leading cause of many infections, for example, those associated with chronic wounds and implanted medical devices. The extracellular matrix is a key biofilm component that determines its architecture and defines its physical properties. Herein, we used growth chambers embedded with micropillars to study the net mechanical forces (differential pressure) exerted during biofilm formation in situ. Pressure from the biofilm is transferred to the micropillars via the extracellular matrix, and reduction of major matrix components decreases the magnitude of micropillar deflections. The spatial arrangement of micropillar deflections caused by pressure differences in the different biofilm strains may potentially be used as mechanical signatures for biofilm characterization. Hence, we submit that micropillar-embedded growth chambers provide insights into the mechanical properties and dynamics of the biofilm and its matrix.en_US
dc.description.sponsorshipSingapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology (SMART))en_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/C5SM02755Aen_US
dc.rightsCreative Commons Attribution-NonCommercial 3.0 Unporteden_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleMechanical signatures of microbial biofilms in micropillar-embedded growth chambersen_US
dc.typeArticleen_US
dc.identifier.citationChew, S. C. et al. “Mechanical Signatures of Microbial Biofilms in Micropillar-Embedded Growth Chambers.” Soft Matter 12.23 (2016): 5224–5232. © 2016 The Royal Society of Chemistryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorDoyle, Patrick S
dc.relation.journalSoft Matteren_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChew, S. C.; Kundukad, B.; Teh, W. K.; Doyle, P.; Yang, L.; Rice, S. A.; Kjelleberg, S.en_US
dspace.embargo.termsNen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record