Show simple item record

dc.contributor.advisorMichael R. Watts.en_US
dc.contributor.authorSu, Zhan, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2017-05-11T19:06:35Z
dc.date.available2017-05-11T19:06:35Z
dc.date.copyright2016en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/108845
dc.descriptionThesis: Ph. D. in Electrical Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 155-167).en_US
dc.description.abstractThe theoretical background of microcavities for photonic applications has been extensively investigated in theory over the past two decades. These structures provide the ability to filter wavelength, support high-Q modes and enhance intensity within the cavities while maintaining a small device footprint. Such characteristics make these structures good candidates to optimize performance and shrink the size of devices for both linear and nonlinear optics. Recent advancements in silicon-based fabrication technology provide access to dopants for active control, material layers such as germanium and silicon nitride, and 3D-integration technologies that were previously exclusive to electronics development, leading to tremendous progress in cavity-based integrated photonic circuits. Using the silicon photonic platform developed by our group, high-performance microcavity-based structures have been demonstrated for optical signal routing, detection, and lasing applications. We first introduce partial-drop filters and present results using them to achieve a highly uniform wavelength-division-multiplexing (WDM) compatible optical multicast system. We then implement a waveguide-coupled resonant detector using a germanium layer grown on top of the silicon. In addition to having low dark current and high-speed performance, the resonant detector extends the wavelength detection range beyond 1620nm while maintaining a device radius only 4.5[mu]m. Furthermore, an easy-to-fabricate waveguide-coupled trench-based Al2O3 microcavity is presented that achieves a Q-factor on the order of 106 with a bend radius on the scale of 100[mu]m. Compact on-chip rare-earth-ion (ytterbium, erbium, thulium) doped Al2O3 lasers were then demonstrated with a sub-milliwatt lasing threshold, making trench-based cavities a suitable platform to achieve optically pumped on-chip lasers.en_US
dc.description.statementofresponsibilityby Zhan Su.en_US
dc.format.extent167 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAdvanced silicon photonic microcavities for routing, detection and lasing applicationsen_US
dc.typeThesisen_US
dc.description.degreePh. D. in Electrical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc986521758en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record