Show simple item record

dc.contributor.advisorRegina Barzilay.en_US
dc.contributor.authorZhang, Yuan, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2017-05-11T19:06:40Z
dc.date.available2017-05-11T19:06:40Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/108847
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 131-142).en_US
dc.description.abstractExpressive machine learning models such as deep neural networks are highly effective when they can be trained with large amounts of in-domain labeled training data. While such annotations may not be readily available for the target task, it is often possible to find labeled data for another related task. The goal of this thesis is to develop novel transfer learning techniques that can effectively leverage annotations in source tasks to improve performance of the target low-resource task. In particular, we focus on two transfer learning scenarios: (1) transfer across languages and (2) transfer across tasks or domains in the same language. In multilingual transfer, we tackle challenges from two perspectives. First, we show that linguistic prior knowledge can be utilized to guide syntactic parsing with little human intervention, by using a hierarchical low-rank tensor method. In both unsupervised and semi-supervised transfer scenarios, this method consistently outperforms state-of-the-art multilingual transfer parsers and the traditional tensor model across more than ten languages. Second, we study lexical-level multilingual transfer in low-resource settings. We demonstrate that only a few (e.g., ten) word translation pairs suffice for an accurate transfer for part-of-speech (POS) tagging. Averaged across six languages, our approach achieves a 37.5% improvement over the monolingual top-performing method when using a comparable amount of supervision. In the second monolingual transfer scenario, we propose an aspect-augmented adversarial network that allows aspect transfer over the same domain. We use this method to transfer across different aspects in the same pathology reports, where traditional domain adaptation approaches commonly fail. Experimental results demonstrate that our approach outperforms different baselines and model variants, yielding a 24% gain on this pathology dataset.en_US
dc.description.statementofresponsibilityby Yuan Zhang.en_US
dc.format.extent142 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleTransfer learning for low-resource natural language analysisen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc986521897en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record