Show simple item record

dc.contributor.advisorA. John Hart.en_US
dc.contributor.authorLettiere, Bethany Roseen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2017-05-11T19:55:13Z
dc.date.available2017-05-11T19:55:13Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/108911
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 63-67).en_US
dc.description.abstractLithium ion batteries (LiBs) are attractive because of their light weight, large specific energy and long cycle life. Lithium ion batteries are typically a planar design where electrode films are manufactured on metal foils and assembled with an ion-conducting separator. The short diffusion length between electrodes in these thin film configurations increases the power density, but reduces the energy density per footprint. There is a need for increasing energy density per footprint to allow for device minimization. 3-dimensional (3D) batteries offer a solution to this problem by creating battery electrodes that have active materials configured perpendicular to the footprint of the material instead of expanding the footprint. This thesis presents the synthesis and initial testing of a carbon nanotube (CNT)-based electrode in a LiB towards the development of 3D microbatteries with high energy density per areal footprint. Microcontact printing is also explored as a scalable method to pattern CNT catalyst. In this thesis, the CNT-based electrode is fabricated by growing vertically aligned CNTs on a copper foil using chemical vapor deposition, and depositing the active material, iron phosphate (FP), conformally onto the CNTs using atomic layer deposition (ALD). The CNTs are grown on a multilayer catalyst-support structure consisting of an iron catalyst and alumina/tungsten support layer. This structure is shown to hinder the diffusion of copper into the substrate surface and yields uniform CNT growth. Conformal coating is achieved on the CNTs by optimizing the ALD recipe. The battery is fabricated using a coin cell using the CNT/FP as the cathode and lithium foil as the counter electrode. The coin cell is measured to have a specific capacity of 17mAh/g, and an areal capacity of 0.035 mAh/cm2 at C/10. Future work will include investigation of the performance of the electrode and bare CNTs electrodes for longer cycles at higher rates for the constructed LiB, and the effects of FP thickness and CNT height on the areal power and capacity density. We will also study the electrical contact between the CNTs and the copper foil. In addition, we will work on the development of concepts for fully 3D CNT-based batteries, e.g. micropatterned CNTs and interdigitated electrodes.en_US
dc.description.statementofresponsibilityby Bethany R. Lettiere.en_US
dc.format.extent67 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleSynthesis and electrochemical characterization of carbon nanotube forests on metal foils for battery electrodesen_US
dc.title.alternativeSynthesis and electrochemical characterization of CNT forests on metal foils for battery electrodeen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc986241312en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record