Show simple item record

dc.contributor.advisorLionel C. Kimerling, Anuradha M. Agarwal and Jurgen Michel.en_US
dc.contributor.authorHan, Zhaohong, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2017-05-11T19:58:03Z
dc.date.available2017-05-11T19:58:03Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/108962
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 113-117).en_US
dc.description.abstractInfrared spectrum, especially mid-infrared range (2.512tm) covers the absorption peaks of many important chemicals including carbon monoxide, methane and water vapor. By analyzing the absorption spectrum of achemical, one can measure the concentration of the chemicals as well as distinguish the chemical species. The purpose of this work is to build a Si CMOS compatible integrated mid-infrared (MIR) platform for sensing. In this work, we evaluated the three major components (materials and devices) comprising an integrated mid-infrared (MIR) sensing platform: the light source, the waveguide sensor and the detector. To build an integrated MIR light source, we evaluated three approaches. 1) Germanium light source, which is the representative of the CMOS compatible semiconductor light source. By applying tensile strain as well as increasing doping and injection level, Ge is tuned to pseudo-direct or direct bandgap structure and the emission wavelength extends to MIR range. 2) Er-doped GaLaS (GLS) platform which is the representative of the rare earth doped material system. A new laser structure is designed for this system with a threshold power of 7.6 ptW and a slope efficiency of 10.26%. 3) Frequency comb generation which is a new area using nonlinearity to generate new frequencies. Thick Si3N4 material for comb structures are designed, fabricated and tested. In the waveguide sensor section, a waveguide structure based on chalcogenide glass (ChG) is built and tested. The sensing limit for methane reaches 2.5 vol. %. Besides, a ChG based small-footprint plasmonic optical switch is designed to work as an optical router for integrated spectrometer applications with a small (167 nm long) footprint. In the last part, a MIR PbTe based integrated detector has been successfully demonstrated for the first time. A further improvement in the material property and device structure yields a responsivity is about 1.4 A/W in the MIR regime.en_US
dc.description.statementofresponsibilityby Zhaohong Han.en_US
dc.format.extent117 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleIntegrated infrared sensor platformen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc986488638en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record