Show simple item record

dc.contributor.advisorDina Katabi.en_US
dc.contributor.authorHsu, Chen-Yu, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2017-05-11T19:58:52Z
dc.date.available2017-05-11T19:58:52Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/108978
dc.descriptionThesis: S.M. in Computer Science and Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 49-53).en_US
dc.description.abstractWe present RF-Capture, a system that captures the human figure - i.e., a coarse skeleton - through a wall. RF-Capture tracks the 3D positions of a person's limbs and body parts even when the person is fully occluded from its sensor, and does so without placing any markers on the subject's body. In designing RF-Capture, we built on recent advances in wireless research, which have shown that certain radio frequency (RF) signals can traverse walls and reflect off the human body, allowing for the detection of human motion through walls. In contrast to these past systems which abstract the entire human body as a single point and find the overall location of that point through walls, we show how we can reconstruct various human body parts and stitch them together to capture the human figure. We built a prototype of RF-Capture and tested it on 15 subjects. Our results show that the system can capture a representative human figure through walls and use it to distinguish between various users.en_US
dc.description.statementofresponsibilityby Chen-Yu Hsu.en_US
dc.format.extent53 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleCapturing the human figure through a wallen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Computer Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc986497430en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record