MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of Mo sidewall ohmic contacts to InGaAs fins

Author(s)
Choi, Dongsung
Thumbnail
DownloadFull printable version (8.982Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Jesús A. del Alamo.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
As transistor size is scaled down, the performance is degraded and many problems, so called shortchannel effects, arise. To address this problem, a vertical transistor structure such as vertical nanowire is suggested. In a vertical nanowire field-effect-transistor, the Ohmic contact at the top of the nanowire not only covers the top surface, but also wraps around the sidewall. Because the sidewall is considered to be different from the top surface, it is necessary to study the sidewall Ohmic contact properties such as the contact resistivity. In this thesis, to explore sidewall contact resistivity, a theoretical model for sidewall contacts is developed. For the suggested test structure, the fin sidewall contact (FSWC) structure, the sidewall contact is modeled with a transmission line model (TLM), and by using TLM, the sidewall contact resistance is derived. Also, an extraction method of the sidewall contact resistivity from the total resistance measured in FSWC structure is developed. Next, process steps to fabricate FSWC structure are developed. FSWC structure is made for Mo/n+-InGaAs contacts. The key step is that the fin etch mask on top of InGaAs is not removed and the metal (Mo) is sputtered so that InGaAs is contacted by the Mo only through the sidewall. Therefore, only a sidewall contact is made without a top contact. Also, to investigate the way to improve the sidewall contact resistivity, the effect of digital etch and annealing on the sidewall contact resistivity is explored. With the measured total resistance in FSWC structure and the extraction method for sidewall contact resistivity, sidewall contact resistivity for each split of digital etch and annealing are extracted. As a summary of the effect of digital etch and annealing, two cycles of digital etch or sequential annealing up to 400 °C improves the sidewall contact resistivity with little sacrifice in semiconductor resistivity. The best result of sidewall contact resistivity is 3.7±0.01[Omega] x [mu]m2 at 400 °C annealing, which is about 1.9 times improvement over the non-annealed value, 6.9±0.05 [Omega] x [mu]m2 but still about 5.4 times larger than the reported top contact resistivity of 0.69±0.3 [Omega] x [mu]m2.
Description
Thesis: S.M. in Electrical Engineering, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 79-80).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/108987
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.