Show simple item record

dc.contributor.advisorDimitri A. Antoniadis.en_US
dc.contributor.authorChern, Winstonen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2017-05-11T20:00:29Z
dc.date.available2017-05-11T20:00:29Z
dc.date.copyright2017en_US
dc.date.issued2017en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/109010
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 157-167).en_US
dc.description.abstractMoore's law has driven technological improvements for decades by halving the areal footprint of the transistor every two years and increasing the performance of making integrated circuits while reducing their cost. The ability to reduce the footprint of the device was enabled by advances in processing technology, novel materials and device design. As ever-smaller footprints are desired, power density limitations and performance degradation require more innovations on all fronts. Recently introduced improvements to integrated circuits are high-K and metal gate for MOSFETs (45-nm node onward), the FinFET (22-nm node onward) and air gaps between copper interconnects (14-nm node) illustrating that at every new technology node there needs to be a materials or process-related improvement to reduce power and maintain performance. Other approaches are also being explored or taken to further improve the MOSFET performance in future technology nodes, namely use of channel materials with higher carrier mobility such as SiGe and Ge for p-MOSFETs, III-V compound semiconductors for n-MOSFETs and steep subthreshold swing devices such as tunnel field effect transistors (TFETs). This work evaluates both approaches utilizing germanium (Ge) and strained-Ge as a material to understand the benefits and drawbacks to both approaches. Hypothetically, high carrier mobility and velocity channel materials can lower the overall power consumption because lower power supply voltage is required to obtain the same amount of current. Germanium and strained-Ge are candidates for the channel material of p-MOSFETs. MOSFETs made using Ge and strained-Ge as the channel material are evaluated based upon the ITRS roadmap requirements using experimental results in this work and data from literature. The approach for using TFETs was evaluated in this work also using germanium as a channel material. TFETs can have a steep subthreshold swing (SS), better than the minimum of 60 mV/decade at room temperature for a MOSFET, which also reduces the total power and supply voltage required for operation. The reduced SS is hypothetically achieved through the band-to-band tunneling which allows for the filtering of the Fermi-tail distribution of carriers. Experimentally, TFETs have not generally shown the steeper than Fermi-tail SS promised by the theory and this work uses both results from fabricated strained-Si/strained-Ge TFETs as well as modeling to explain why this has been the case. The challenges for both technologies are outlined in this thesis and suggestions are made on approaches to tackling their respective intrinsic problems from the point of view of Ge-based devices.en_US
dc.description.statementofresponsibilityby Winston Chern.en_US
dc.format.extent167 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleProspects of germanium-based MOSFETs and tunnel transistors for low power digital logicen_US
dc.title.alternativeProspects of Ge-based metal-oxide semiconductor field-effect transistors and tunnel transistors for low power digital logicen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc986529351en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record